Appendix of '"Top- k Feature Selection Framework using Robust 0-1 Integer Programming"

Appendix A: Optimization of Sub-problem 1

In sub-problem 1, we fix \mathbf{A} and \mathbf{v} to optimize \mathbf{Z} and \mathbf{E}. This sub-problem can be solved by the ADMM as described in [1]. The augmented Lagrangian function is given by:

$$
\begin{aligned}
\mathcal{L}_{1}\left(\mathbf{Z}, \mathbf{Q}, \mathbf{E}, \mathbf{Y}_{1}, \mathbf{Y}_{2}\right) & =\|\mathbf{Z}\|_{1}+\lambda_{E}\|\mathbf{E}\|_{1}+\lambda_{Z}\|\mathbf{Z} \odot \mathbf{\Theta}\|_{1} \\
& +\left\langle\mathbf{Y}_{1}, \mathbf{X}-\mathbf{X Q}-\mathbf{E}\right\rangle+\left\langle\mathbf{Y}_{2}, \mathbf{Q}-\mathbf{Z}+\operatorname{diag}(\mathbf{Z})\right\rangle \\
& +\frac{\mu}{2}\left(\|\mathbf{X}-\mathbf{X Q}-\mathbf{E}\|_{F}^{2}+\|\mathbf{Q}-\mathbf{Z}+\operatorname{diag}(\mathbf{Z})\|_{F}^{2}\right)
\end{aligned}
$$

where \mathbf{Y}_{1} and \mathbf{Y}_{2} are the Lagrange multipliers, $\mu>0$ is an adaptive parameter, and $\langle\cdot, \cdot\rangle$ denotes the inner product.

When optimizing \mathbf{Z}, we solve the following sub-problem:

$$
\begin{equation*}
\mathbf{Z}^{(t+1)}=\underset{\mathbf{Z}}{\arg \min }\left\|\left(\mathbf{1 1}^{T}+\lambda_{Z} \mathbf{\Theta}\right) \odot \mathbf{Z}\right\|_{1}+\frac{\mu^{(t)}}{2}\left\|\mathbf{Q}^{(t)}-\mathbf{Z}+\operatorname{diag}(\mathbf{Z})+\frac{\mathbf{Y}_{2}^{(t)}}{\mu^{(t)}}\right\|_{F}^{2} \tag{1}
\end{equation*}
$$

where 1 indicates the vector whose entries are all 1s. The closed-form solution of Eq. (1) is:

$$
\begin{equation*}
\mathbf{Z}^{(t+1)}=\hat{\mathbf{Z}}^{(t+1)}-\operatorname{diag}\left(\mathbf{Z}^{(\hat{t+1)})}\right) \tag{2}
\end{equation*}
$$

where $\hat{\mathbf{Z}}^{(t+1)}=\mathcal{S}_{\frac{1}{\mu^{(t)}}\left(1+\lambda_{z} \Theta_{i j}\right)}\left(\mathbf{Q}^{(t)}+\frac{\mathbf{Y}_{2}^{(t)}}{\mu^{(t)}}\right)$, and $\mathcal{S}(\cdot)$ is the element-wise shrinkage thresholding operator.

When optimizing \mathbf{Q}, we minimize the following objective function:

$$
\begin{align*}
\min _{\mathbf{Q}} & \left\langle\mathbf{Y}_{1}^{(t)}, \mathbf{X}-\mathbf{X Q}-\mathbf{E}^{(t)}\right\rangle+\left\langle\mathbf{Y}_{2}^{(t)}, \mathbf{Q}-\mathbf{Z}^{(t+1)}+\operatorname{diag}\left(\mathbf{Z}^{(t+1)}\right)\right\rangle \\
& +\frac{\mu^{(t)}}{2}\left(\left\|\mathbf{X}-\mathbf{X Q}-\mathbf{E}^{(t)}\right\|_{F}^{2}+\left\|\mathbf{Q}-\mathbf{Z}^{(t+1)}+\operatorname{diag}\left(\mathbf{Z}^{(t+1)}\right)\right\|_{F}^{2}\right) . \tag{3}
\end{align*}
$$

Eq. (3) can be solved as:

$$
\begin{equation*}
\mathbf{Q}^{(t+1)}=\left(\mathbf{X}^{T} \mathbf{X}+\mathbf{I}\right)^{-1}\left(\mathbf{X}^{T}\left(\mathbf{X}-\mathbf{E}^{(t)}+\frac{\mathbf{Y}_{1}^{(t)}}{\mu^{(t)}}\right)+\mathbf{Z}^{(t+1)}-\operatorname{diag}\left(\mathbf{Z}^{(t+1)}\right)\right) \tag{4}
\end{equation*}
$$

When optimizing \mathbf{E}, we solve the following sub-problem:

$$
\begin{equation*}
\min _{\mathbf{E}} \quad \lambda_{E}\|\mathbf{E}\|_{1}+\frac{\mu^{(t)}}{2}\left\|\mathbf{X}-\mathbf{X Q}^{(t+1)}-\mathbf{E}+\frac{\mathbf{Y}_{1}^{(t)}}{\mu^{(t)}}\right\|_{F}^{2} \tag{5}
\end{equation*}
$$

Similar to solving Eq.(1), we obtain its closed-form solution:

$$
\begin{equation*}
\mathbf{E}^{(t+1)}=\mathcal{S}_{\frac{\lambda_{E}}{\mu(t)}}\left(\mathbf{X}-\mathbf{X} \mathbf{Q}^{(t+1)}+\frac{\mathbf{Y}_{1}^{(t)}}{\mu^{(t)}}\right) \tag{6}
\end{equation*}
$$

At last, we update the Lagrange multipliers as follows:

$$
\begin{align*}
& \mathbf{Y}_{1}^{(t+1)}=\mathbf{Y}_{1}^{(t)}+\mu^{(t)}\left(\mathbf{X}-\mathbf{X} \mathbf{Q}^{(t+1)}-\mathbf{E}^{(t+1)}\right) \\
& \mathbf{Y}_{2}^{(t+1)}=\mathbf{Y}_{2}^{(t)}+\mu^{(t)}\left(\mathbf{Q}^{(t+1)}-\mathbf{Z}^{(t+1)}+\operatorname{diag}\left(\mathbf{Z}^{(t+1)}\right)\right) \\
& \mu^{(t+1)}=\rho \mu^{(t)} \tag{7}
\end{align*}
$$

The ADMM algorithm for solving this sub-problem is shown in Algorithm 1.

```
Algorithm 1 ADMM for solving Sub-problem 1
Input: \(\mathbf{X}\) and \(\boldsymbol{\Theta}\).
Output: Z and E.
    while not converge do
        Update \(\mathbf{Z}\) by Eq. (2).
        Update Q by Eq. (4).
        Update \(\mathbf{E}\) by Eq. (6).
        Update \(\mathbf{Y}_{1}, \mathbf{Y}_{2}\) and \(\mu\) by Eq. (7).
    end while
```


Appendix B: Semi-supervised learning on W

In unsupervised learning, we use a data matrix $\mathbf{X}=\left[\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}, \mathbf{x}_{n+1}, \cdots, \mathbf{x}_{N}\right] \in$ $\mathbb{R}^{D \times N}$, and a few labels $\mathbf{Y}_{l}=\left[\mathbf{y}_{1}, \cdots, \mathbf{y}_{n}\right] \in \mathbb{R}^{C \times n}$, where \mathbf{y}_{j} is the label of \mathbf{x}_{j} and is a C-dimensional indicator vector (in which $y_{i j}=1$ indicates that \mathbf{x}_{j} belongs to the j-th class). $\mathbf{x}_{n+1}, \cdots, \mathbf{x}_{N}$ are unlabeled data, whose labels are inferred from the labeled data. We define the label matrix of unlabeled data as $\mathbf{Y}_{u} \in \mathbb{R}^{C \times(N-n)}$.

When we obtain the soft data structure matrix \mathbf{W}, we construct the Laplacian matrix $\mathbf{L}=\mathbf{D}-\mathbf{W}$, where \mathbf{D} is a diagonal matrix with diagonal elements $D_{i i}=$ $\sum_{j=1}^{N} W_{i j}$. Then we learn \mathbf{Y}_{u} using the label propagation method, which solves the following problem:

$$
\begin{align*}
\min _{\mathbf{Y}_{u}} & \operatorname{tr}\left(\left[\mathbf{Y}_{l}, \mathbf{Y}_{u}\right] \mathbf{L}\left[\mathbf{Y}_{l}, \mathbf{Y}_{u}\right]^{T}\right) \tag{8}\\
\text { s.t. } & \mathbf{Y}_{u} \in \mathcal{Y}
\end{align*}
$$

where \mathcal{Y} is the space of label matrices, i.e., $\mathcal{Y}=\left\{\mathbf{Y}_{u} \in\{0,1\}^{C \times(N-n)}: \mathbf{Y}_{u}^{T} \mathbf{1}_{N-n}=\right.$ $\left.\mathbf{1}_{C}, \operatorname{rank}\left(\mathbf{Y}_{u}\right)=C\right\}$.

Eq. (8) can be solved approximately using label propagation approaches, e.g., the harmonic function approach [2]. Specifically, we first divide \mathbf{L} into the following form:

$$
\mathbf{L}=\left[\begin{array}{cc}
\mathbf{L}_{l l} & \mathbf{L}_{l u} \tag{9}\\
\mathbf{L}_{l u}^{T} & \mathbf{L}_{u u}
\end{array}\right]
$$

where $\mathbf{L}_{l l} \in \mathbb{R}^{n \times n}$ and $\mathbf{L}_{u u} \in \mathbb{R}^{(N-n) \times(N-n)}$. Then we compute the harmonic solution:

$$
\begin{equation*}
\mathbf{Y}_{u}=\mathbf{Y}_{l} \mathbf{L}_{l u} \mathbf{L}_{u u}^{-1} \tag{10}
\end{equation*}
$$

At last, we discretize \mathbf{Y}_{u} by setting the maximum value in each column as 1 and setting the others as 0 .

References

[1] M. Fan, X. Chang, and D. Tao, "Structure regularized unsupervised discriminant feature analysis," in Thirty-First AAAI Conference on Artificial Intelligence, 2017.
[2] X. Zhu, Z. Ghahramani, and J. D. Lafferty, "Semi-supervised learning using gaussian fields and harmonic functions," in Proceedings of the 20th International conference on Machine learning (ICML-03), 2003, pp. 912-919.

