Appendix of "Top-k Feature Selection Framework using Robust 0-1 Integer Programming"

Appendix A: Optimization of Sub-problem 1

In sub-problem 1, we fix \mathbf{A} and \mathbf{v} to optimize \mathbf{Z} and \mathbf{E} . This sub-problem can be solved by the ADMM as described in [1]. The augmented Lagrangian function is given by:

$$\begin{split} \mathcal{L}_1(\mathbf{Z},\mathbf{Q},\mathbf{E},\mathbf{Y}_1,\mathbf{Y}_2) = & \|\mathbf{Z}\|_1 + \lambda_E \|\mathbf{E}\|_1 + \lambda_Z \|\mathbf{Z} \odot \boldsymbol{\Theta}\|_1 \\ & + \langle \mathbf{Y}_1, \mathbf{X} - \mathbf{X}\mathbf{Q} - \mathbf{E} \rangle + \langle \mathbf{Y}_2, \mathbf{Q} - \mathbf{Z} + \operatorname{diag}(\mathbf{Z}) \rangle \\ & + \frac{\mu}{2} \left(\|\mathbf{X} - \mathbf{X}\mathbf{Q} - \mathbf{E}\|_F^2 + \|\mathbf{Q} - \mathbf{Z} + \operatorname{diag}(\mathbf{Z})\|_F^2 \right) \end{split}$$

where \mathbf{Y}_1 and \mathbf{Y}_2 are the Lagrange multipliers, $\mu > 0$ is an adaptive parameter, and $\langle \cdot, \cdot \rangle$ denotes the inner product.

When optimizing \mathbf{Z} , we solve the following sub-problem:

$$\mathbf{Z}^{(t+1)} = \underset{\mathbf{Z}}{\operatorname{arg\,min}} \left\| \left(\mathbf{1}\mathbf{1}^{T} + \lambda_{Z}\boldsymbol{\Theta} \right) \odot \mathbf{Z} \right\|_{1} + \frac{\mu^{(t)}}{2} \left\| \mathbf{Q}^{(t)} - \mathbf{Z} + \operatorname{diag}(\mathbf{Z}) + \frac{\mathbf{Y}_{2}^{(t)}}{\mu^{(t)}} \right\|_{F}^{2}$$
(1)

where **1** indicates the vector whose entries are all 1s. The closed-form solution of Eq. (1) is:

$$\mathbf{Z}^{(t+1)} = \hat{\mathbf{Z}}^{(t+1)} - \operatorname{diag}(\mathbf{Z}^{(t+1)}).$$
⁽²⁾

where $\hat{\mathbf{Z}}^{(t+1)} = S_{\frac{1}{\mu^{(t)}}(1+\lambda_Z\Theta_{ij})}\left(\mathbf{Q}^{(t)} + \frac{\mathbf{Y}_2^{(t)}}{\mu^{(t)}}\right)$, and $S(\cdot)$ is the element-wise shrink-age thresholding operator.

When optimizing \mathbf{Q} , we minimize the following objective function:

$$\min_{\mathbf{Q}} \left\langle \mathbf{Y}_{1}^{(t)}, \mathbf{X} - \mathbf{X}\mathbf{Q} - \mathbf{E}^{(t)} \right\rangle + \left\langle \mathbf{Y}_{2}^{(t)}, \mathbf{Q} - \mathbf{Z}^{(t+1)} + \operatorname{diag}(\mathbf{Z}^{(t+1)}) \right\rangle \\
+ \frac{\mu^{(t)}}{2} \left(\|\mathbf{X} - \mathbf{X}\mathbf{Q} - \mathbf{E}^{(t)}\|_{F}^{2} + \|\mathbf{Q} - \mathbf{Z}^{(t+1)} + \operatorname{diag}(\mathbf{Z}^{(t+1)})\|_{F}^{2} \right). \quad (3)$$

Eq. (3) can be solved as:

$$\mathbf{Q}^{(t+1)} = \left(\mathbf{X}^T \mathbf{X} + \mathbf{I}\right)^{-1} \left(\mathbf{X}^T \left(\mathbf{X} - \mathbf{E}^{(t)} + \frac{\mathbf{Y}_1^{(t)}}{\mu^{(t)}}\right) + \mathbf{Z}^{(t+1)} - \operatorname{diag}(\mathbf{Z}^{(t+1)})\right)$$
(4)

When optimizing E, we solve the following sub-problem:

$$\min_{\mathbf{E}} \quad \lambda_E \|\mathbf{E}\|_1 + \frac{\mu^{(t)}}{2} \left\| \mathbf{X} - \mathbf{X} \mathbf{Q}^{(t+1)} - \mathbf{E} + \frac{\mathbf{Y}_1^{(t)}}{\mu^{(t)}} \right\|_F^2.$$
(5)

Similar to solving Eq.(1), we obtain its closed-form solution:

$$\mathbf{E}^{(t+1)} = \mathcal{S}_{\frac{\lambda_E}{\mu^{(t)}}} \left(\mathbf{X} - \mathbf{X} \mathbf{Q}^{(t+1)} + \frac{\mathbf{Y}_1^{(t)}}{\mu^{(t)}} \right).$$
(6)

At last, we update the Lagrange multipliers as follows:

$$\begin{aligned} \mathbf{Y}_{1}^{(t+1)} &= \mathbf{Y}_{1}^{(t)} + \mu^{(t)} (\mathbf{X} - \mathbf{X} \mathbf{Q}^{(t+1)} - \mathbf{E}^{(t+1)}). \\ \mathbf{Y}_{2}^{(t+1)} &= \mathbf{Y}_{2}^{(t)} + \mu^{(t)} (\mathbf{Q}^{(t+1)} - \mathbf{Z}^{(t+1)} + \text{diag}(\mathbf{Z}^{(t+1)})). \\ \mu^{(t+1)} &= \rho \mu^{(t)}. \end{aligned}$$
(7)

The ADMM algorithm for solving this sub-problem is shown in Algorithm 1.

- 2: Update **Z** by Eq. (2).
- 3: Update \mathbf{Q} by Eq. (4).
- 4: Update **E** by Eq. (6).
- 5: Update \mathbf{Y}_1 , \mathbf{Y}_2 and μ by Eq. (7).

6: end while

Appendix B: Semi-supervised learning on W

In unsupervised learning, we use a data matrix $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}_{n+1}, \dots, \mathbf{x}_N] \in \mathbb{R}^{D \times N}$, and a few labels $\mathbf{Y}_l = [\mathbf{y}_1, \dots, \mathbf{y}_n] \in \mathbb{R}^{C \times n}$, where \mathbf{y}_j is the label of \mathbf{x}_j and is a *C*-dimensional indicator vector (in which $y_{ij} = 1$ indicates that \mathbf{x}_j belongs to the *j*-th class). $\mathbf{x}_{n+1}, \dots, \mathbf{x}_N$ are unlabeled data, whose labels are inferred from the labeled data. We define the label matrix of unlabeled data as $\mathbf{Y}_u \in \mathbb{R}^{C \times (N-n)}$.

When we obtain the soft data structure matrix \mathbf{W} , we construct the Laplacian matrix $\mathbf{L} = \mathbf{D} - \mathbf{W}$, where \mathbf{D} is a diagonal matrix with diagonal elements $D_{ii} = \sum_{j=1}^{N} W_{ij}$. Then we learn \mathbf{Y}_u using the label propagation method, which solves the following problem:

$$\min_{\mathbf{Y}_{u}} tr\left([\mathbf{Y}_{l}, \mathbf{Y}_{u}]\mathbf{L}[\mathbf{Y}_{l}, \mathbf{Y}_{u}]^{T}\right)$$

$$s.t. \quad \mathbf{Y}_{u} \in \mathcal{Y}.$$
(8)

where \mathcal{Y} is the space of label matrices, i.e., $\mathcal{Y} = \{\mathbf{Y}_u \in \{0, 1\}^{C \times (N-n)} : \mathbf{Y}_u^T \mathbf{1}_{N-n} = \mathbf{1}_C, rank(\mathbf{Y}_u) = C\}.$

Eq. (8) can be solved approximately using label propagation approaches, e.g., the harmonic function approach [2]. Specifically, we first divide \mathbf{L} into the following form:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{lu}^T & \mathbf{L}_{uu} \end{bmatrix}$$
(9)

where $\mathbf{L}_{ll} \in \mathbb{R}^{n \times n}$ and $\mathbf{L}_{uu} \in \mathbb{R}^{(N-n) \times (N-n)}$. Then we compute the harmonic solution:

$$\mathbf{Y}_u = \mathbf{Y}_l \mathbf{L}_{lu} \mathbf{L}_{uu}^{-1}. \tag{10}$$

At last, we discretize \mathbf{Y}_u by setting the maximum value in each column as 1 and setting the others as 0.

References

- [1] M. Fan, X. Chang, and D. Tao, "Structure regularized unsupervised discriminant feature analysis," in *Thirty-First AAAI Conference on Artificial Intelligence*, 2017.
- [2] X. Zhu, Z. Ghahramani, and J. D. Lafferty, "Semi-supervised learning using gaussian fields and harmonic functions," in *Proceedings of the 20th International conference on Machine learning (ICML-03)*, 2003, pp. 912–919.